$5(R)$-Isopropenyl-2-methyl- $6(R)-[1(R)$-methyl-2-nitroethyllcyclohex-2-en-1-one

By Darlene D. Johnston and Nicholas C. Payne*
Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7

(Received 16 October 1980; accepted 23 February 1981)

Abstract

C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}\), monoclinic, $P 2_{1}, a=8.881$ (2), $b=9.408$ (2), $c=8.481$ (2) $\AA, \beta=111 \cdot 10(1)^{\circ}, Z=$ $2, D_{c}=1 \cdot 19, D_{m}=1 \cdot 18(1) \mathrm{Mg} \mathrm{m}^{-3}, U=661 \cdot 1 \AA^{3}$, $\mu($ Mo $K \alpha)=4.9 \mathrm{~mm}^{-1}$. The final R_{1} and R_{2} values are 0.0421 and 0.0408 respectively, based on 1236 reflections for which $F^{2}>2 \sigma\left(F^{2}\right)$. All 19 H atoms have been refined with isotropic Debye factors. The absolute configuration at $\mathrm{C}(11)$ has been shown to be R, based upon the known absolute configuration of (-)-carvone.

Introduction. The use of nitroethene or 1-nitropropene as bicycloannulation reagents in one-step syntheses of tricyclic species has recently been described (Cory, Anderson, McLaren \& Yamamoto, 1981). During studies of the bicycloannulation of (-)-carvone with 1 -nitropropene, a 75% combined yield of two diastereomeric adducts (in a ratio of 4 to 1) was obtained by quenching the reaction at 195 K with acetic acid (see scheme). In order to establish the stereochemistry of the major adduct, a single-crystal X-ray study was undertaken. Crystals suitable for analysis were obtained by recrystallization from ethanol. Weissenberg and precession photography established the space group as $P 2_{1}$; systematic absences $0 k 0$ for k odd. The crystal (approximate dimensions $0.42 \times 0.19 \times 0.14$ mm) was centered and aligned on a Picker FACS-1 four-circle diffractometer, controlled by the Vanderbilt operating system (Lenhert, 1975). Mo $K \alpha$ radiation ($\lambda=0.71070 \AA$), monochromatized by graphite, was used to record 1798 observations out to a 2θ maximum of 50°. Six standard reflections, $020,020,100,011$, 002 and 002 , were monitored regularly. Only random variations were observed until, after 800 observations had been recorded, a power failure interrupted data collection. Subsequent measurements showed a $20(2) \%$ uniform decrease in counts; a correction was made in the later stages of refinement. Nine crystal faces were identified as forms $\{100\},\{001\}$ and $\{111\}$, and faces ($01 \overline{1}$), (101) and ($\overline{1} 01$). No absorption correction was made. The raw data were corrected for background, monochromator polarization and Lorentz-polarization effects, and standard deviations

[^0]0567-7408/81/071472-03\$01.00
assigned as described elsewhere (Payne, 1973). p was chosen as 0.03 (Busing \& Levy, 1957).

After many unsuccessful attempts to solve the structure by direct methods, a solution was obtained by a Patterson search approach (Tollin, 1966), utilizing the known geometry of the $\mathrm{C}_{9} \mathrm{O}$ fragment formed by the six-membered ring and the four atoms to which it is bonded. Refinement was by full-matrix least-squares techniques, minimizing the function $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where $\left|F_{o}\right|$ and $\left|F_{c}\right|$ are the observed and calculated structure amplitudes, and the weight w is defined as $4 F_{o}^{2} / \sigma^{2}\left(F_{o}^{2}\right)$. Agreement factors $R_{1}=\sum| | F_{o} \mid-$ $\left|F_{c}\right|\left|/ \sum\right| F_{o} \mid=0.093$ and $R_{2}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} /\right.$ $\left.\sum w F_{o}^{2}\right]^{1 / 2}=0.099$ were obtained, with all 17 non-H atoms assigned anisotropic thermal parameters. Atomic scattering factors for neutral O, N and C atoms were taken from International Tables for X-ray Crystallography (1974), and those for H from Stewart, Davidson \& Simpson (1965). The chosen model had the absolute configuration known to be that of $(-)$-carvone (Klein \& Ohloff, 1963). The 19 H atoms were readily located in a difference Fourier synthesis; their inclusion with fixed isotropic Debye factors reduced R_{1} to 0.054 and R_{2} to 0.051 . Subsequent refinement of their thermal parameters gave an acceptable geometry, and converged at $R_{1}=0.050$ and $R,=0.046$.

At this stage a decay correction was introduced, whereby all later observations were multiplied by 1.25 . A significant reduction in the magnitudes of the thermal parameters and an improvement in the agreement factors were observed. Refinement finally converged at $R_{1}=0.0421$ and $R_{2}=0.0408$ for 1236 observations and 229 variables. A total difference Fourier synthesis contained no peak larger than $0.22(6)$ e \AA^{-3}, there was no evidence for secondary extinction, and a statistical analysis of R_{2} in terms of $\left|F_{o}\right|$, indices, $\lambda^{-1} \sin \theta$, and diffractometer setting angles χ and φ showed no © 1981 International Union of Crystallography

$$
\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}
$$

unusual trends. The final positional parameters and their e.s.d.'s are given in Table 1.*

Discussion. The crystals are built up from discrete molecules, for only two intermolecular distances were observed less than $2.5 \AA: 2 \cdot 47(5) \AA$, between $O(1)$ and $\mathrm{H} 2 \mathrm{C}(13)$ at $1-x$, $\frac{1}{2}+y, 1-z$, and 2.49 (6) \AA, between $\mathrm{H} 2 \mathrm{C}(4)$ and $\mathrm{H} 2 \mathrm{C}(12)$ at $1-x, y-\frac{1}{2},-z$. Fig. 1 shows the atom-numbering scheme, while Fig. 2 is a stereoview of the molecule. Selected intramolecular distances and angles are given in Table 2. The results

[^1]Table 1. Positional parameters $\left(\times 10^{4}\right)$ and thermal parameters $\left(\AA^{2} \times 10^{3}\right)$ with e.s.d.'s in parentheses

The temperature factor is given by $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\right.\right.$ $\left.\left.2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right] . U_{i j}=\beta_{i j} /\left(2 \pi^{2} a_{i}^{*} a_{j}^{*}\right)$ and $U_{\text {eq }}=$ $\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{l} \cdot \mathbf{a}_{j}$.

	x	y	z	$U_{\mathrm{eq}} \text { or }$
O(1)	4019 (3)	2000	4178 (4)	73 (2)
$\mathrm{O}(2)$	9740 (4)	-172 (5)	6531 (4)	93 (2)
$\mathrm{O}(3)$	8964 (4)	1098 (5)	8140 (4)	97 (2)
N	8713 (4)	417 (5)	6864 (5)	59 (2)
C(1)	3819 (5)	1079 (5)	3121 (4)	47 (2)
$\mathrm{C}(2)$	2231 (4)	447 (6)	2307 (5)	55 (2)
C(3)	2030 (6)	-561 (6)	1173 (6)	58 (3)
C(4)	3312 (5)	-1145 (6)	665 (6)	53 (2)
C(5)	4986 (4)	--956 (5)	2004 (5)	41 (2)
C(6)	5207 (4)	615 (5)	2605 (4)	38 (2)
C(7)	866 (7)	1027 (10)	2786 (9)	93 (4)
C(8)	6284 (5)	-1472 (6)	1411 (5)	50 (2)
C(9)	7156 (6)	-2594 (7)	2114 (7)	78 (3)
C(10)	6514 (7)	-741 (8)	-30(7)	74 (3)
C(11)	6880 (4)	925 (5)	3932 (4)	42 (2)
C(12)	7370 (7)	2485 (6)	4048 (7)	61 (3)
C(13)	7021 (5)	353 (7)	5647 (5)	55 (2)
HC(3)	1204 (58)	-902 (55)	708 (60)	91 (19)
H1C(4)	3074 (41)	-2104 (48)	454 (44)	58 (12)
H2C(4)	3299 (42)	-692 (37)	-393 (51)	64 (12)
HC(5)	4909 (36)	-1511 (35)	2899 (39)	40 (9)
HC(6)	5188 (37)	1151 (38)	1636 (42)	44 (10)
H1C(7)	-86 (64)	580 (53)	2278 (59)	105 (18)
H2C(7)	1136 (58)	843 (58)	4092 (64)	113 (18)
H3C(7)	576 (77)	2006 (84)	2916 (82)	169 (29)
H1C(9)	6901 (42)	-3083 (42)	2936 (47)	53 (12)
H2C(9)	7941 (52)	-2928 (49)	1617 (50)	85 (14)
H1C(10)	5333 (82)	-663 (64)	-865 (76)	162 (28)
H2C(10)	7475 (63)	-1259 (62)	-476 (66)	132 (19)
H3C(10)	6830 (59)	246 (67)	252 (54)	101 (18)
$\mathrm{HC}(11)$	7654 (33)	403 (31)	3658 (32)	27 (8)
HIC(12)	8527 (49)	2577 (41)	4867 (45)	62 (11)
H2C(12)	7271 (45)	2804 (45)	2953 (54)	71 (14)
H3C(12)	6680 (52)	2988 (52)	4353 (51)	79 (18)
H1C(13)	6185 (52)	792 (51)	6251 (48)	89 (14)
H2C(13)	6645 (44)	-478 (47)	5600 (44)	52 (12)

Fig. 1. The atom-numbering scheme.

Fig. 2. A stereoview of the molecule with atoms drawn as 50% probability thermal ellipsoids.

Table 2. Intramolecular bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{C}(1)-\mathrm{O}(1)$	$1.213(4)$	$\mathrm{C}(6)-\mathrm{C}(11)$	$1.535(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.455(5)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.318(6)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.513(5)$	$\mathrm{C}(8)-\mathrm{C}(10)$	$1.479(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.316(5)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.524(6)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.512(6)$	$\mathrm{C}(11)-\mathrm{C}(13)$	$1.513(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.462(6)$	$\mathrm{N}-\mathrm{C}(13)$	$1.486(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.522(5)$	$\mathrm{N}-\mathrm{O}(2)$	$1.185(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.553(5)$	$\mathrm{N}-\mathrm{O}(3)$	$1.207(4)$

$\mathrm{C}(5)-\mathrm{C}(8) \quad 1.495$ (5)

$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)$	$113.4(3)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	$114.1(3)$
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.4(5)$
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(10)$	$118.7(4)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)$	$120.9(5)$
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(12)$	$114.2(3)$
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(13)$	$111.1(3)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	$111.0(4)$
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{N}$	$111.5(4)$
$\mathrm{C}(13)-\mathrm{N}-\mathrm{O}(2)$	$119.2(4)$
$\mathrm{C}(13)-\mathrm{N}-\mathrm{O}(3)$	$117.3(4)$
$\mathrm{O}(2)-\mathrm{N}-\mathrm{O}(3)$	$123.5(4)$

from the refinement were satisfactory; $\mathrm{C}-\mathrm{H}$ bond lengths varied from 0.77 (5) to 1.16 (5) \AA, a mean of 0.97 (9) \AA. Angles at $s p^{3} \mathrm{C}$ atoms (including the three methyl groups) had a mean of $108(7)^{\circ}$, and at $s p^{2} \mathrm{C}$ atoms a mean of $119(4)^{\circ}$.
Some weighted least-squares planes are given in Table 3. Both the nitro fragment and the isopropenyl group are planar, within experimental error, though

Table 3. Weighted least-squares planes
Distances from the plane are given in \AA.
$\begin{array}{cccc}\text { Plane } A: 3.005 x+7.733 y-4.657 z= & -2.515 \\ \mathrm{~N} & -0.005(4) & \mathrm{O}(2) & 0.003(5) \\ \mathrm{C}(13) & 0.005(6) & \mathrm{O}(3) & 0.003(5)\end{array}$
Plane $B: 4 \cdot 110 x+5 \cdot 669 y+3 \cdot 732 z=2 \cdot 260$

$\mathrm{C}(5)$	$-0.005(4)$	$\mathrm{C}(10)$	$-0.015(7)$
$\mathrm{C}(8)$	$0.014(4)$	H1C(9)	$-0.07(3)$
$\mathrm{C}(9)$	$-0.001(5)$	H2C(9)	$-0.05(4)$

$\begin{array}{cclr}\text { Plane } C:-2.940 x-6.499 y+5.817 z & =1.002 & \\ \text { O(1) } & 0.010(2) & \mathrm{C}(4) & 0.032(6) \\ \text { C(1) } & 0.000(4) & \mathrm{C}(6) & -0.039(4) \\ \text { C(2) } & -0.016(4) & \mathrm{C}(7) & -0.074(9) \\ \mathrm{C}(3) & -0.015(5) & \mathrm{HC}(3) & -0.04(5)\end{array}$
some twisting is apparent [see the displacements of $C(4), C(6)$ and $C(7)]$ in the α, β-unsaturated ketone moiety.

Bond distances and bond angles are all in good agreement with those determined for similar diastereoisomers of cyclohexanone by Calligaris, Giordano \& Randaccio (1966) and Calligaris, Manzini, Pitacco \& Valentin (1975).

The absolute configuration at $C(11)$ has been determined to be R based upon the known absolute
configuration of (-)-carvone. Furthermore, the stereochemistry of the title compound is that required for the production of the major bicycloannulation product (Cory et al., 1981).

We thank the Natural Science and Engineering Research Council of Canada for financial support of this work.

References

Busing, W. R. \& Levy, H. A. (1957). J. Chem. Phys. 26, 563-568.
Calligaris, M., Giordano, F. \& Randaccio, L. (1966). Ric. Sci. 36, 1333-1338.
Calligaris, M., Manzini, G., Pitacco, G. \& Valentin, E. (1975). Tetrahedron, 31, 1501-1506.

Cory, R. M., Anderson, P. C., Mclaren, F. R. \& Yамамото, B. R. (1981). Chem. Commun. pp. 73-74.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Klein, E. \& Ohloff, G. (1963). Tetrahedron, 19, 10911099.

Lenhert, P. G. (1975). J. Appl. Cryst. 8, 568-569.
Payne, N. C. (1973). Inorg. Chem. 12, 1151-1156.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Tollin, P. (1966). Acta Cryst. 21, 613-614.

Acta Cryst. (1981). B37, 1474-1477

Pivaloyl-glycyl- \boldsymbol{N}^{\prime}-méthyl-L-prolinamide Monohydratée

Par A. Aubry
Laboratoire de Minéralogie-Cristallographie, Equipe de Recherche associée au CNRS $n^{\circ} 162$, Université de Nancy I, Case Officielle n° 140, 54037 Nancy CEDEX, France
et G. Boussard et M. Marraud
Laboratoire de Chimie Physique Macromoléculaire, Equipe de Recherche associée au CNRS $n^{\circ} 23, E N S I C$,
1 rue Grandville, 54000 Nancy CEDEX, France

(Reçu le 8 octobre 1980, accepté le 24 février 1981)

Abstract

C}_{13} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} . \mathrm{H}_{2} \mathrm{O}\), tetragonal, space group $P 4_{3}, a=9.806(1), c=16.253$ (3) $\AA, V=1563 \AA^{3}$, $d_{x}=1.22 \mathrm{Mg} \mathrm{m}^{-3}, Z=4(T=293 \mathrm{~K})$. The final R_{F} is 0.048 for 917 observed reflections. Molecular conformations show opened forms stabilized by a threedimensional network of hydrogen bonds.

Introduction. Dans le cadre de l'étude systématique des séquences dipeptidiques contenant le résidu proline et protégées aux deux extrémités par des fonctions amides (Aubry, Protas, Boussard \& Marraud, 1977, 1979,

1980a,b; Boussard, Marraud \& Néel, 1974; Boussard, Marraud \& Aubry, 1979), nous présentons ici la structure cristalline de la pivaloyl-glycyl- N^{\prime}-méthyl-L-prolinamide monohydratée ($t \mathrm{BuCO}-\mathrm{Gly}$-L-ProNHMe) de formule:

(c) 1981 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic and isotropic thermal parameters, and bond distances and bond angles defined by H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35949 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

